2,086 research outputs found

    Super-resolving phase measurements with a multi-photon entangled state

    Full text link
    Using a linear optical elements and post-selection, we construct an entangled polarization state of three photons in the same spatial mode. This state is analogous to a ``photon-number path entangled state'' and can be used for super-resolving interferometry. Measuring a birefringent phase shift, we demonstrate two- and three-fold improvements in phase resolution.Comment: 4 pages, 3 figure

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Acceptability of a Positive Parenting Programme on a Mother and Baby Unit: Q-Methodology with Staff

    Get PDF
    The Baby Triple P Positive Parenting Programme, a new addition to the established Triple P programmes, is currently being considered for a trial in a Mother and Baby Unit with the aim of exploring its benefits to mothers presenting with severe mental illness. The aim of the current study was to investigate staff views of the acceptability and feasibility of a parenting programme such as the Baby Triple P Positive Parenting Programme in a Mother and Baby Unit. Q-methodology, using an 88-item Q-sort, was employed to explore the opinions of 16 staff working in a Mother and Baby Unit in the North West of England. Results obtained from the Q-sort analysis identified two distinct factors: (1) staff qualified acceptance and (2) systemic approach/systemic results. Preliminary findings indicate that staff perceived Baby Triple P to be an acceptable and feasible intervention for the Mother and Baby Unit setting and that mothers on the unit would be open and receptive to the programme. Further research is required to expand these findings and assess the potential for this type of intervention to be used more widely across a number of Mother and Baby Unit settings

    Successful treatment of bilateral open calcaneal fractures with concomitant lower extremity injuries: A case report

    Get PDF
    Open calcaneal fractures are high morbidity injuries and the risk of complications depends on the concomitant injuries, on the size and the position of the traumatic wound. A 53-year-old male patient with bilateral open calcaneal fractures and associated concomitant lower extremity injuries such as subtalar dislocation, talonavicular dislocation and open distal tibial metaphyseal fracture was immediately operated by percutaneous Kirschner wire fixation combined with external fixators. He was able to walk with full weight bearing without any assistance at the end of the first postoperative year. Early aggressive debridement and irrigation followed by fixation with percutaneous Kirschner wires and external fixator can supply bony alignment in open comminuted calcaneal fractures associated with concomitant lower extremity injuries and should be considered for the healthy and active patients before primary arthrodesis

    A systematic review and meta-synthesis of the impact of low back pain on people's lives

    Get PDF
    Copyright @ 2014 Froud et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Background - Low back pain (LBP) is a common and costly problem that many interpret within a biopsychosocial model. There is renewed concern that core-sets of outcome measures do not capture what is important. To inform debate about the coverage of back pain outcome measure core-sets, and to suggest areas worthy of exploration within healthcare consultations, we have synthesised the qualitative literature on the impact of low back pain on people’s lives. Methods - Two reviewers searched CINAHL, Embase, PsycINFO, PEDro, and Medline, identifying qualitative studies of people’s experiences of non-specific LBP. Abstracted data were thematic coded and synthesised using a meta-ethnographic, and a meta-narrative approach. Results - We included 49 papers describing 42 studies. Patients are concerned with engagement in meaningful activities; but they also want to be believed and have their experiences and identity, as someone ‘doing battle’ with pain, validated. Patients seek diagnosis, treatment, and cure, but also reassurance of the absence of pathology. Some struggle to meet social expectations and obligations. When these are achieved, the credibility of their pain/disability claims can be jeopardised. Others withdraw, fearful of disapproval, or unable or unwilling to accommodate social demands. Patients generally seek to regain their pre-pain levels of health, and physical and emotional stability. After time, this can be perceived to become unrealistic and some adjust their expectations accordingly. Conclusions - The social component of the biopsychosocial model is not well represented in current core-sets of outcome measures. Clinicians should appreciate that the broader impact of low back pain includes social factors; this may be crucial to improving patients’ experiences of health care. Researchers should consider social factors to help develop a portfolio of more relevant outcome measures.Arthritis Research U

    The NIRVANDELS Survey: A robust detection of α-enhancement in star-forming galaxies at z ≃3.4

    Get PDF
    We present results from the NIRVANDELS survey on the gas-phase metallicity (Zg, tracing O/H) and stellar metallicity (Z∗, tracing Fe/H) of 33 star-forming galaxies at redshifts 2.95 3, finding (O/Fe) = 2.54 ± 0.38 × (O/Fe)⊙, with no clear dependence on M∗

    De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder

    Get PDF
    Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR= 1.6; 95% CI= 1.0-2.7; p= 0.03), are more common in female probands (p= 0.02), are enriched among genes encoding FMRP targets (p= 6× 10-9), and arise predominantly on the paternal chromosome (p< 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release

    Designing nanomaterials with desired mechanical properties by constraining the evolution of their grain shapes

    Get PDF
    Grain shapes are acknowledged to impact nanomaterials' overall properties. Research works on this issue include grain-elongation and grain-strain measurements and their impacts on nanomaterials' mechanical properties. This paper proposes a stochastic model for grain strain undergoing severe plastic deformation. Most models deal with equivalent radii assuming that nanomaterials' grains are spherical. These models neglect true grain shapes. This paper also proposes a theoretical approach of extending existing models by considering grain shape distribution during stochastic design and modelling of nanomaterials' constituent structures and mechanical properties. This is achieved by introducing grain 'form'. Example 'forms' for 2-D and 3-D grains are proposed. From the definitions of form, strain and Hall-Petch-Relationship to Reversed-Hall-Petch-Relationship, data obtained for nanomaterials' grain size and conventional materials' properties are sufficient for analysis. Proposed extended models are solved simultaneously and tested with grain growth data. It is shown that the nature of form evolution depends on form choice and dimensional space. Long-run results reveal that grain boundary migration process causes grains to become spherical, grain rotation coalescence makes them deviate away from becoming spherical and they initially deviate away from becoming spherical before converging into spherical ones due to the TOTAL process. Percentage deviations from spherical grains depend on dimensional space and form: 0% minimum and 100% maximum deviations were observed. It is shown that the plots for grain shape functions lie above the spherical (control) value of 1 in 2-D grains for all considered grain growth mechanisms. Some plots lie above the spherical value, and others approach the spherical value before deviating below it when dealing with 3-D grains. The physical interpretations of these variations are explained from elementary principles about the different grain growth mechanisms. It is observed that materials whose grains deviate further away from the spherical ones have more enhanced properties, while materials with spherical grains have lesser properties. It is observed that there exist critical states beyond which Hall-Petch Relationship changes to Reversed Hall-Petch Relationship. It can be concluded that if grain shapes in nanomaterials are constrained in the way they evolve, then nanomaterials with desired properties can be designed
    corecore